The University of Tennessee

Energy Efficient Thermal Management of Natural Gas Engine Aftertreatment Via Active Flow Control

David K. Irick, Principal Investigator

William Cary Smith, Project Manager, DOE/NETL

Ronald Fiskum, Program Sponsor, DOE/EERE

COOPERATIVE AGREEMENT DE-FC26-02NT41609

Awarded (10/01/2002, 36 Month Duration)

\$750,000 Total Contract Value (\$600,000 DOE)

2005 ARES University Peer Review Argonne National Laboratory
July 12, 2005

Meeting ARES Goals with NOx Adsorber Technology

$$\eta = 50\%$$

High efficiency typically requires a lean air-fuel mixture

$$NOx = 0.10 g/hp-hr$$

NOx reduction typically requires a rich air-fuel mixture

NOx Adsorbing Catalyst

Unlike typical 3-way catalysts, NOx adsorbers allow for lean-burn operation as well as NOx reduction

Project Objectives

- Reduce NO_x and CH₄ emission by 90% from lean burn natural gas engines
- Reduce supplemental fuel use by 50-70%
- Reduce catalyst costs
- Manage exhaust energy

Schedule

Technical Approach

- Partial flow restriction for regeneration and desulfurization of NOx adsorber
- Alternating between regeneration and adsorption for NOx adsorber
- Periodic flow reversal for oxidation catalyst
- Supplemental fuel injection for regeneration and desulfurization of NOx adsorber and for maintaining light-off of oxidation catalyst

Bench Flow Reactor

- Reverse Flow Oxidation Catalyst System Evaluation
- Lean NOx Trap Evaluation and
 Optimization

 Length 76 mm
 Plantage 23 a mm

Length 76 mm

Diameter 22.2 mm

CPSI 200

LNT Catalyst
Pt, Barium Oxide / Alumina
Loading – 3.53 kg-Pt/m³

Oxidation Catalyst
Pd – Alumina
Loading: 0.88,1.76, 2.65
& 3.53 kg-Pd/m³

Schematic of the Bench-Flow Reactor System

Reverse Flow Oxidation Catalyst System Evaluation

Accomplishments

Reverse-Flow Oxidation Catalyst Reactor Characterization Matrix

	400°C	450°C	500°C	550°C	600°C
20,000 hr ⁻¹	√	√	\checkmark	\checkmark	N/A
40,000 hr ⁻¹	√	√	\checkmark	\checkmark	N/A
60,000 hr ⁻¹	√	\checkmark	\checkmark	\checkmark	N/A
80,000 hr ⁻¹	N/A	\checkmark	\checkmark	\checkmark	\checkmark

Switching Time: 10, 15, 20, 30, and 45 seconds

•Supplemental fuel injection evaluation at 350° C, SV = $20,000 \text{ hr}^{-1}$

Experimental Setup

	Oxidation Catalyst Physical Parameters
Palladium	Alumina Catalyst
Length:	ā in.
Diameter:	7/8 in.
epsi:	300
Loading:	100 g-Pd/n ³

NOx	0
H_2	0
CO	0.5%
CH_4	2000 ppm
CO_2	6%
H_2O	10%
O_2	6%
N_2	Balance

Operation of the Reverse-Flow Oxidation Catalyst Reactor

- ☐ Symmetrical switching time is defined as duration in the forward flow being equal to the reverse flow
- ☐ Unsymmetrical switching time is defined as the duration in the forward flow being different than the reverse flow

Reverse Flow Operation

Methane Conversion

Furnace Temperature = 400°C

Temperature Profile

Furnace Temperature = 400°C GHSV = 20,000 hr⁻¹

Methane Conversion

Furnace Temperature = 450° C

Temperature Profile

Furnace Temperature = 450°C GHSV = 40,000 hr⁻¹

Methane Conversion

Furnace Temperature = 550°C

Supplemental Fuel Injection

Unidirectional Flow

Temperature Profile

Unidirectional Flow

Supplemental Fuel Injection

Reverse Flow

Temperature Profile

Conclusions

- •CH₄ Conversion Improves with Flow Reversal
- At a GHSV of 20,000 hr⁻¹ Low Frequency Switching Times (30-45 Seconds) Produces a Maximum CH₄ Conversion
- At GHSVs of 40,000, 60,000, and 80,000 hr⁻¹ High Frequency Switching Times (10-20 Seconds) Produce a Maximum CH₄ Conversion
- Supplemental Fuel Injection Improves CH₄ Conversion
- Supplemental Fuel Injection with Flow Reversal Further Improves CH₄ Conversion

Modeling of Reverse Flow Oxidation Catalyst

Accomplishments

- A 1-D, Plug flow heterogeneous model for reverse—flow oxidation catalyst has been developed.
- A code for the above model has been developed using Fortran.
- Simulation for different flow conditions is being done.
- Fine tune the simulated results and graphs.
- Simulate using the code for different temperatures with variable switching time and compare with the results from the experiments.

Lean NOx Trap Evaluation and Optimization

Accomplishments

- Evaluation of LNT's storage capacity and breakthrough as function of temperatures (250-500°) and space velocities (25,000 75,000 hr⁻¹)
- Evaluation of H₂ and CO as reducing agents
- Evaluation of regeneration of LNTs using lean and rich cycling and direct fuel injection

Storage Capacity and Breakthrough

• The NOx storage capacity is directly proportional to the area between the NOx inlet concentration and the NOx outlet concentration trace.

• Breakthrough time is the time after which there is an onset of NOx in the exhaust gas flowing from the outlet of LNT.

Absorption Isotherms at a Gas Hourly Space Velocity of 25,000 hr ⁻¹

LNT Storage Capacity

LNT Breakthrough Time

NOx Conversion for Cycling 100s lean and 5s rich with 500ppm of NOx Inlet Concentration (4% H₂, T=350C° and SV=50,000hr⁻¹)

NOx Conversion for Direct Fuel Injection with 500ppm of NOx Inlet Concentration

 $(4\% \text{ H}_2, 100 \text{s lean}, 5 \text{s rich}, T=350 \text{C}, \text{ and } \text{SV} = 50,000 \text{hr}^{-1})$

Conclusions

- Optimum working temperature of LNT catalyst was found to be at 350° C at all space velocities
- Hydrogen was found to be a better reducing agent than carbon monoxide
- NOx conversion with direct fuel-injection and cycling lean and rich conditions are comparable

Engine Scale Development

- Optimization of LNT configuration and control
- Development of reverse flow oxidation catalyst system and control

Lean Burn Natural Gas Engine

Collaboration with our colleagues at Oak Ridge National Laboratory

- •Engine test cell located at National Transportation Research Center, a partnership between UTK and ORNL
- •Baseline operating data for the engine and aftertreatment system shared between this project and ORNL's ARES project- "NO_x Emissions Control for Natural Gas Engines and Natural Gas Vehicles"

C Gas Plus General Engine Data					
Name	C Gas Plus				
Model	CG-280				
Туре	4 Cycle; In-Line 6 Cylinder				
Bore x Stroke (mm)	114 x 135				
Displacement (L)	8.3				
General Performance Data	Peak Power	Peak Torque			
Engine Speed (rpm)	2400	1400			
Engine Power (kW)	209	169			
Engine Torque (N-m)	831	1153			
Inlet Air Flow (L/sec)	293	205			
Exhaust Gas Flow (L/sec)	817	539			
Exhaust Gas Temperature (C)	643	587			
Nominal Fuel Consumption (kg/hr)	47	34			
Inlet Air Restriction (mm H2O)	445				
Exhaust Restriction (mm Hg)	102				

Space Shared Multi-Chamber NOx Adsorber

Experimental Setup

Experimental Setup

Results NOx Adsorber Capacity

Results NOx Adsorber Capacity

Results NOx Adsorber Capacity

Results NOx Adsorber Regeneration

Results NOx Adsorber Regeneration

Results NOx Adsorber Regeneration

Lean NO_x Trap System

- Test NO_x reduction in a dual leg system
- Optimize dual leg LNT system on time based regeneration (open-loop)
- Observe and isolate key parameters that will enable closed loop operation
- Optimize closed loop system to reach ARES goal of 0.1 g/bhp-hr engine out NO_x

Reverse Flow Catalyst System

- Engine testing will utilize the Cummins 8.3L NG engine test bed at NTRC facility
- Initially the LNT section will be by-passed to isolate key parameters
- Testing will focus on maintaining optimum temperature profile for high efficiency oxidation

Reversing Valve

Reversing Valve

Future Work

- Complete fabrication of the four-way reversing valve
- Engine testing and optimization of the reverse flow catalyst system
- LNT control development and regeneration optimization
- Complete reverse flow catalyst and LNT system integration and optimization

Complete LNT and Reverse Flow System

Complete System Optimization

- UTK/ORNL ARES work to date has been done on a single leg system with a bypass
- Current phase is modeling the optimal catalyst volume (multiple legs) required to minimize fuel penalty while meeting ARES goal
- Final phase will test complete multi-leg system with intelligent control system

Effects of Catalyst Volume

- Increased catalyst volume increases adsorption time, which decreases supplemental fuel frequency and use
- Increased catalyst volume through multiple legs can slightly reduce catalyst temperature (off-line cooling effect)
- Increased catalyst volume and reduced catalyst temperature will optimize the trapping efficiency

^{*} Plots based on bench flow data

Storage Capacity

Optimize Catalyst Volume

- Model investigating the temperature and fueling effects based on increased catalyst volume
- Model will also outline parameters to investigate in complete system testing

- i. Catalyst Temperature
- ii. NOx Rate
- iii. Fuel Rate/Oxygen Depletion
- iv. Methane Utilization/H₂ Creation
- v. Regen Flow Rate

UTK Intelligent NOx Reduction Control System

Time Based Control

- Regen/Adsorb Cycle controlled by time period developed from laboratory data collected in ORNL study
- Catalyst temperature, fuel rate, and NOx reduction were optimized based on laboratory observations

Feedback Loop Control

- Based on intelligence gained in ORNL and UTK bench flow reactor work, control system will monitor key parameters i.e. NOx engine out rate, catalyst temperature
- Based on stored maps of catalyst storage rate, the control system will initiate regen to optimize methane utilization, H₂ creation, and NOx conversion while minimizing fuel penalty

Acknowledgements

- Oak Ridge National Laboratory
 - James E. Parks II
 - John M. E. Storey
 - Timothy J. Theiss
- EmeraChem
- UTK
 - Faculty and Staff
 - Ke Nguyen
 - Vitcheslav Naoumov
 - Doug Ferguson
 - *Ming Zheng
 - Graduate Students
 - Scott Smith
 - Barath Raghavan
 - Kim Hakyong
 - Balaji Ramamurthy
 - John Miller
 - Aaron Williams

